Home
Class 11
PHYSICS
यदि vec(A)और vec(B) एक - दूसरे के लंबवत ...

यदि `vec(A)`और `vec(B)` एक - दूसरे के लंबवत है तो सिद्ध कीजिए कि- `|vec(A)+vec(B)|=sqrt(A^(2)+B^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(vec A*vec B)+|vec A+vec B|^(2)=

Prove that |vec(a) xx vec(b)| = sqrt(a^(2)b^(2) -(vec(a) -vec(b))^(2))

Find the angle between vec(a) and vec(b) , when (i) |vec(a)|=2, |vec(b)|=1 and vec(A).vec(B)=sqrt(3) (ii) |vec(a)|=|vec(b)|=sqrt(2) and vec(a).vec(b)=-1 .

If vec(a) and vec(B) are two vectors such that |vec(a)|=|vec(b)|=sqrt(2) and vec(a).vec(b)=-1 , find the angle between vec(a) and vec(b) .

Two vectors vec(A) and vec(B) have magnitudes 2 and 2sqrt(2) respectively. It is found that vec(A).vec(B) = |vec(A) xx vec(B)| , then the value of |(vec(A)+vec(B))/(vec(A)-vec(B))| will be :

If |vec(a)|= |vec(b)| =1 and |vec(a) xx vec(b)|= vec(a).vec(b) , then |vec(a) + vec(b)|^(2)=

If |vec a xx vec b| = 4 and |vec a . vec b| = 2, then |vec a|^(2) . |vec b|^(2) =

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

Let |vec(a)| # 0.|vec(b)| ne 0 (vec(a) + vec(b)). (vec(a) + vec(b)) = |vec(a)|^(2) + |vec(b)|^(2) holds if and only if