Home
Class 11
MATHS
lim(x rarr oo)(a(n)x^(n)+...+a(1)x+a(0))...

`lim_(x rarr oo)(a_(n)x^(n)+...+a_(1)x+a_(0))/(b_(m)x^(m)+.....+b_(1)x+b_(0))=`(n < m)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+...+a_(n))/(b_(0)x^(m)+b_(1)x^(m-1)+b_(2)x^(m-2)+...+b_(m)) ; m, n>0 is equal to A. 0 when m > n B. oo when m C. (a_(0))/(b_(0)) when m=n D. none of these

If n is a positive integer,then find the value of lim_(n rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+...+a_(n))/(b_(0)x^(n)+b_(1)x^(n-1)+...+b_(n))

If n is a positive integer,then find the value of lim_(n rarr oo)(a_(0)x^(n)+a_(1)x^(n-1)+...+a_(n))/(b_(0)x^(n)+b_(1)x^(n-1)+...+b_(n))

lim_(x rarr oo){((a_(1))^((1)/(x))+(a_(2))^((1)/(x))+...+(a_(n))^((1)/(x)))/(n)}^(nx)

f(x)=(a_(2n)x^(2n)+a_(2n-1)x^(2n-1)+...+a_(1)x+a_(0))/(b_(2n)x^(2n)+b_(2n-1)x^(2n-1)+....+b_(1)x+b_(0)) where n in N,a_(i),b_(i)in R and b_(2n!=0). If domain of f(x) is R ,then

lim_(x rarr oo)[((x+a_(1))(x+a_(2))dots.......(x+a_(n)))^((1)/(n))-x]

lim_(x rarr0)((a_(1)^(x)+a_(2)^(x)......+a_(n)^(x))/(n))^((1)/(x))=

Evaluate: lim_(n rarr oo)((a_(1)^((1)/(1))+a_(2)^((1)/(2))+...+a_(n)^((1)/(n)))/(n))^(nx)

Evaluate : lim_(x rarr0)((1-cos(a_(1)x)*cos(a_(2)x)*cos(a_(3)x))......cos(a_(n)x))/(x^(2)) where a_(1),a_(2),a_(3).........a_(n)in R

Let f(x) = a_(0)x^(n) + a_(1)x^(n-1) + a_(2) x^(n-2) + …. + a_(n-1)x + a_(n) , where a_(0), a_(1), a_(2),...., a_(n) are real numbers. If f(x) is divided by (ax - b), then the remainder is