Home
Class 12
MATHS
underset(x to oo)lim (sqrt(x^(2)+1)-root...

`underset(x to oo)lim (sqrt(x^(2)+1)-root3(x^(2)+1))/(root4(x^(4)+1)-root5(x^(4)+1)))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to oo) (sqrt(x^(2)+1)-root3(x^(3)-1))/(root4(x^(4)+1)-root5(x^(4)+1))

lim_(x rarr oo) (sqrt(x^(2) + 1) - root(3)(x^(3) + 1))/(root(4)(x^(4) + 1) - root(5) (x^(4) + 1)) equals :

Evaluate lim_(xtooo) (sqrt(x^(2)+1)-root(3)(x^3+1))/(root(4)(x^(4)+1)-root(5)(x^(4)+1))

Evaluate lim_(xtooo) (sqrt(x^(2)+1)-root(3)(x^3+1))/(root(4)(x^(4)+1)-root(5)(x^(4)+1))

Evaluate lim_(xtooo) (sqrt(x^(2)+1)-root(3)(x^3+1))/(root(4)(x^(4)+1)-root(5)(x^(4)+1))

underset(xto oo)lim(sqrt(1+x^4)-(1+x^2))/x^2

Evaluate: lim_(x->oo)(sqrt(x^2+1)-root3(x^3+1 ))/(root4(x^4+1) -root5(x^4+1 ))

Evaluate underset(x to -oo)lim(sqrt(x^(2)+3x+1))/(2x+4)

Evaluate underset(x to -oo)lim(sqrt(x^(2)+3x+1))/(2x+4)

underset(x to 1)"Lt" (root3(x^(2))-2root3(x)+1)/((x-1)^(2))=