Home
Class 12
MATHS
The function f(x)=cos^(-1)((2[|sinx|+|co...

The function `f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4))` is defined if x belongs to (where [.] represents the greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=cos^(-1)((2[sin x|+|cos x|])/(sin^(2)x+2sin x+(11)/(4))) is defined if x belongs to (where [.] represents the greatest integer function)

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

f(x)=[sinx] where [.] denotest the greatest integer function is continuous at:

The value of lim_(x to 0) (sinx)/(3) [5/x] is equal to [where [.] represent the greatest integer function)

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)