Home
Class 12
MATHS
Statement 1: Minimum number of points of...

Statement 1: Minimum number of points of discontinuity of the function `f(x)=(g(x)[2x-1]AAx in (-3,-1)` , where [.] denotes the greatest integer function and `g(x)=a x^3+x^2+1` is zero. Statement 2: `f(x)` can be continuous at a point of discontinuity, say `x=c_1` of `[2x-1] `if `g(c_1)=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1], where [.] represents the greatest integer function

The number of points of discontinuities of the function f(x)=|x-1|+|x-2|+cos x in [0,4] is

Find the points of discontinuity of the function: f(x)=(1)/(1-e^((x-1)/(x-2)))

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

If (x)={g^(x),x =0f(x)={g^(x),x =0 where [.1) denotes the greatest integer function. The f(x)

The function f(x)=[x]cos((2x-1)/(2))pi where I l denotes the greatest integer function,is discontinuous

For a function f(x)=(2(x^(2)+1))/([x]) (where [.] denotes the greatest integer function), if 1lexlt4 . Then

The range of the function f(x)=[log_((2)/(3))|(x^(2)-1)/(x^(2)+1)|] where [-1 denotes the greatest integer function is