Home
Class 12
MATHS
The value of lim(xto1)(tan((pi)/4+logx))...

The value of `lim_(xto1)(tan((pi)/4+logx))^(1/(logx))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

The value of lim_(xto1) (2-x)^(tan((pix)/(2))) is

Evaluate: lim_(xto0)[tan(x+(pi)/(4))]^(1//x)

lim_(x to 1)(log ex)^(1//logx) is equal to

lim_(xto1)(4x-1)

The value of lim _(xto1) (1-x) tan ""(pix)/(2) is-

The value of lim_(x rarr1)((4)/(pi)tan^(-1)x)^(1/(x^(2)-1)) equal to