Home
Class 12
MATHS
lim(xto0) [(sin(sgn(x)))/((sgn(x)))], wh...

`lim_(xto0) [(sin(sgn(x)))/((sgn(x)))],` where `[.]` denotes the greatest integer function, is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

("lim")_(x->0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where[dot] denotes the greatest integer function, is equal to 0 (b) 1 (c) -1 (d) does not exist

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is