Home
Class 12
MATHS
if f(x)=e^(-1/x^2),x!=0 and f (0)=0 th...

if `f(x)=e^(-1/x^2),x!=0` and `f (0)=0` then `f'(0)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x)=e^(-(1)/(x^(2))),x>0 and f(x)=0,x<=0 then f(x) is

f(x)={e^(-(1)/(x^(2)))x>0 and 0x<=0 then f(x) is

f(x)=e^x.g(x) , g(0)=2 and g'(0)=1 then f'(0)=

Let f(x) = e^(x)g(x) , g(0)=2 and g (0)=1 , then find f'(0) .

Let f(x)={[((e^(3x)-1))/(x),,x!=0],[3,,x=0]} then 2f'(0) is

If f(x) = {(1/(1+e^(1/x)), x ne 0),(0, x= 0):} then f(x) is

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x)/(x^(2)) , for x!=0 , then f(0)=