Home
Class 12
MATHS
lim(xto0) ((1+tanx)/(1+sinx))^(cosecx) i...

`lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0){(1+tanx)/(1+sinx)}^("cosec x") is equal to

Evaluate the following limits : Lt_(xto0)((1+tanx)/(1+sinx))^(cosecx)

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

lim_(xto0)(tanx-5x)/(7x-sinx) =….

lim_(xto0)(sinx)^(2tanx)=