Home
Class 12
MATHS
Number of integers in the range of f(x)=...

Number of integers in the range of `f(x)=1/pi(sin^(-1)x+tan^(-1)x)+(x+1)/(x^2+2x+5)` is `0` b. `3` c. `2` d. `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of f(x)= (1)/(pi)sin^(-1)x+tan^(-1)+(x+1)/(x^(2)+2x+5)

Range of f(x)=cos^(-1)x+2sin^(-1)x+3tan^(-1)x is

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Range of the function f(x)=sin^(-1)x+2tan^(-1)x+x^(2)+4x+3 is

The range of f(x)=(sin pi[x^(2)-1])/(x^(4)+1) is f(x)in:

range of the function f(x)=cos^(-1)x+2sin^(-1)x+3tan^(-1)x

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

Number of integers satisfying the inequation (x^(2)-x-1)(x^(2)-x-7)<-5, are 4 (b) 2 (c) 1(d)0

Range of f(x)=sin^(-1)x+tan^(-1)x+sqrt(x+1) is [a,b] then b+a is equal to

Range of f(x)=(sec x+tan x-1)/(tan x-sec x+1)x in(0,(pi)/(2))