Home
Class 12
MATHS
The value of lim(n rarr oo)(1/sqrt(4n^(2...

The value of `lim_(n rarr oo)(1/sqrt(4n^(2)-1)+1/sqrt(4n^(2)-4)+...+1/sqrt(4n^(2)-n^(2)))` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

The value of lim_(n rarr oo)[3sqrt((n+1)^(2))-3sqrt((n-1)^(2))] is

The value of lim_(nto oo)(1/(sqrt(n^(2)))+1/(sqrt(n^(2)+1))+…..+1/(sqrt(n^(2)+2n))) is

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

Evaluate: lim_(n rarr oo)((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+...+(1)/(sqrt(3n^(2))))

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

Evaluate: ("lim")_(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

Evaluate: ("lim")_(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))