Home
Class 12
MATHS
A curve in the xy-plane is parametricall...

A curve in the xy-plane is parametrically given by `x=t+t^3a n dy=t^2,w h e r et in R` is the parameter. For what value(s) of `t` is `(dy)/(dx)=1/2?` `1/3` b. `2` c. `3` d. `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

A curve parametrically given by x=t+t^(3)" and "y=t^(2)," where "t in R." For what vlaue(s) of t is "(dy)/(dx)=(1)/(2) ?

A curve parametrically given by x=t+t^(3)" and "y=t^(2)," where "t in R." For what vlaue(s) of t is "(dy)/(dx)=(1)/(2) ?

If x=t+(1)/(t) and y=t-(1)/(t) , where t is a parameter,then a value of (dy)/(dx)

If x= 2at , y= 2a , where t is parameter, then (dy)/(dx) = 1/t . (True/False)

If x and y are connected parametrically by the equations given,without eliminating the parameter,Find (dy)/(dx)x=sin t,y=cos2t

A function is reprersented parametrically by the equations x=(1+t)/(t^(3));y=(3)/(2t^(2))+(2)/(t). Then the value of |(dy)/(dx)-x((dy)/(dx))

If x = e^(t) sin t and y = e^(t) cos t, t is a parameter , then the value of (d^(2) x)/( dy^(2)) + (d^(2) y)/(dx^(2)) at t = 0 , is :

If x=a(t-(1)/(t)),y=a(t+(1)/(t)) , where t be the parameter, then (dy)/(dx)=?

A curve is represented parametrically by the equations x=f(t)=a^(In(b^t))and y=g(t)=b^(-In(a^(t)))a,bgt0 and a ne 1, b ne 1" Where "t in R. The value of (d^(2)y)/(dx^(2)) at the point where f(t)=g(t) is