Home
Class 12
MATHS
The range of the function f(x) =[sinx+co...

The range of the function `f(x) =[sinx+cosx]` (where `[x]` denotes the greatest integer function) is `f(x) in ` :

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

The range of the function f(x)=x-[x] , where [x] denotes the greatest integer le x, is :

The range of the function f(x)=[x]-x , where [x] denotes the greatest integer le x is :

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

The range of f(x)=[sin{x}], where [x] denotes greatest integer function