Home
Class 12
MATHS
Suppose |[f'(x),f(x)],[f''(x),f'(x)]|=0 ...

Suppose `|[f'(x),f(x)],[f''(x),f'(x)]|=0` is continuously differentiable function with `f^(prime)(x)!=0` and satisfies `f(0)=1` and `f'(0)=2` then `(lim)_(x->0)(f(x)-1)/x` is `1//2` b. `1` c. `2` d. `0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

If f(x)={ax^(2)+b,x 1;b!=0, then f(x) is continuous and differentiable at x=1 if

If f(x) is a differentiable function satisfying |f'(x)| le 2 AA x in [0, 4] and f(0)=0 , then

If f(x) be a differentiable function for all positive numbers such that f(x.y)=f(x)+f(y) and f(e)=1 then lim_(x rarr0)(f(x+1))/(2x)

If f(x) be a differentiable function,such that f(x)f(y)+2=f(x)+f(y)+f(xy);f'(0)=0,f'(1)=2 then find f(x)

Suppose for a differentiable function f,f(0)=0,f(1)=1 and f(0)=4=f'(1) If g(x)=f(e^(x))*e^(f(x)) then g'(0) is

There exists a function f(x) satisfying 'f (0)=1,f(0)=-1,f(x) lt 0,AAx and