Home
Class 12
MATHS
Let f: R-> R, be defined as f(x) = e^(x^...

Let `f: R-> R`, be defined as `f(x) = e^(x^2)+ cos x`, then is (a) one-one and onto (b) one-one and into (c) many-one and onto (d) many-one and into

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R, be defined as f(x)=e^(x^(2))+cos x, then is (a) one-one and onto (b) one-one and into ( c) many-one and onto (d) many-one and into

The function f: R->R defined by f(x)=2^x+2^(|x|) is (a) one-one and onto (b) many-one and onto (c) one-one and into (d) many-one and into

The function f: R->R defined by f(x)=6^x+6^(|x|) is (a) one-one and onto (b) many one and onto (c) one-one and into (d) many one and into

f: N rarr N, where f(x)=x-(-1)^(x) .Then f is: (a)one-one and into (b)many-one and into (c)one-one and onto (d)many-one and onto

f(x) is a polynomial function, f: R rarr R, such that f(2x)=f'(x)f''(x). f(x) is (A) one-one and onto (B) one-one and into (C) many-one and onto (D) many-one and into

Let f: R->R be a function defined by f(x)=(x^2-8)/(x^2+2) . Then, f is (a) one-one but not onto (b) one-one and onto (c) onto but not one-one (d) neither one-one nor onto

The function f:(-oo,-1)rarr(0,e^(5)) defined by f(x)=e^(x^(3)-3x+2) is (a)many one and onto (b)many one and into (c)one-one and onto (d)one-one and into

the function f : R rarr [ -1,1 ] defined by f(x) = cos x is (a) both one-one and onto (b) not one-one, but onto (c) one-one, but not onto (d) neither one-one, nor onto

f:[-1,1]rarr[-1,2]f(x)=x+|x|, is (1) one-one onto (2) one-one into (3) many one onto (4) many one into

f: R->R is defined by f(x)=(e^x^2-e^-x^2)/(e^x^2+e^-x^2) is (a) one-one but not onto (b) many-one but onto (c) one-one and onto (d) neither one-one nor onto