Home
Class 11
MATHS
If a + ib = c + id, then...

If `a + ib = c + id`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sqrt3 + i) = (a + ib) (c + id) then tan^(-1) (b)/(a) + tan^(-1) (d)/(c) =

The inequality a + ib gt c + id is true when

If (a + ib) (c + id) (e + if) (g + ih) = A + iB , then show that (a^2 + b^2) (c^2 + d^2) (e^2 +f^2) (g^2+ h^2) = A^2 + B^2

The inequality a + ib < c + id holds if

POO is a straight line through the origin O. P and O represent the complex numbers a + ib and c + id respectively and OP = OO. Then

If x -iy = sqrt([(a - ib)/(c-id)]) , then (x^(2) + y^(2))^(2) =

If (a+ib)(c+id)(e+if)(g+ih) = A + iB , then show that (a^(2) + b^(2))(c^(2) + d^(2))(e^(2) + f^(2)) (g^(2) + h^(2)) = A^(2) + B^(2)

If (a+ib)(c+id)(e+if)(g+ih) = A + iB , then show that (a^(2) + b^(2))(c^(2) + d^(2))(e^(2) + f^(2)) (g^(2) + h^(2)) = A^(2) + B^(2)

If (a+ib)(c+id)(e+if)(g+ih) = A + iB , then show that (a^(2) + b^(2))(c^(2) + d^(2))(e^(2) + f^(2)) (g^(2) + h^(2)) = A^(2) + B^(2)

If (a+ib)(c+id)(e+if)(g+ih) = A + iB , then show that (a^(2) + b^(2))(c^(2) + d^(2))(e^(2) + f^(2)) (g^(2) + h^(2)) = A^(2) + B^(2)