Home
Class 12
MATHS
The function 'g' defined by g(x)= sin(si...

The function 'g' defined by `g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1` (where {x} denotes the functional part function) is (1) an even function (2) a periodic function (3) an odd function (4) neither even nor odd

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function defined by f(x) = sin^(-1)sqrt(x-1) is

The function g, defined by g(x) = sinalpha + cosalpha - 1, alpha = sin^(-1) sqrt({x}) , {.} denotes fractional part function is

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

log(x-3) is (A) is an even function (B) an odd function (C) neither even nor odd (D) cannot be determined

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

Range of the function f (x) =cot ^(-1){-x}+ sin ^(-1){x} + cos ^(-1) {x}, where {.} denotes fractional part function:

Range of the function f(x)=cot^(-1){-x}+sin^(-1){x}+cos^(-1){x} , where {*} denotes fractional part function

If 2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{sin^(-1)x} , then x in : (where {*} denotes fractional part function)

If [sin^(-1)(cos^(-1)(sin^(-1)(tan^(-1)x)))]=1 where [*] denotes the greatest integer function,then x in

The function f(x)=sin(log(x+sqrt(1+x^(2)))) is (a) even function (b) odd function (c) neither even nor odd (d) periodic function