Home
Class 12
MATHS
If vec axx( vec bxx vec c) is perpendic...

If ` vec axx( vec bxx vec c)` is perpendicular to `( vec axx vec b)xx vec c ,` we may have `( vec adot vec c)| vec b|^2=( vec adot vec b)( vec bdot vec c)` b. ` vec adot vec b=0` c. ` vec adot vec c=0` d. ` vec bdot vec c=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec axx( vec bxx vec c) is perpendicular to ( vec axx vec b)xx vec c , we may have a. ( vec a. vec c)| vec b|^2=( vec a. vec b)( vec b.vec c)( vec c.vec a) b. vec adot vec b=0 c. vec adot vec c=0 d. vec bdot vec c=0

If vec axx( vec bxx vec c) is perpendicular to ( vec axx vec b)xx vec c , we may have a. ( vec a. vec c)| vec b|^2=( vec a. vec b)( vec b.vec c)( vec c.vec a) b. vec adot vec b=0 c. vec adot vec c=0 d. vec bdot vec c=0

If vec axx( vec bxx vec c) is perpendicular to ( vec axx vec b)xx vec c , we may have a. ( vec a . vec c)| vec b|^2=( vec a . vec b)( vec b . vec c) b. vec adot vec b=0 c. vec adot vec c=0 d. vec bdot vec c=0

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to | vec a|^2( vec bdot vec c) b. | vec b|^2( vec adot vec c) c. | vec c|^2( vec adot vec b) d. none of these

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is vec bdot vec c= vec adot vec d b. vec adot vec b= vec c dot vec d c. vec bdot vec c+ vec adot vec d=0 d. vec adot vec b+ vec c dot vec d=0

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is a. vec bdot vec c= vec adot vec d b. vec adot vec b= vec c dot vec d c. vec bdot vec c+ vec adot vec d=0 d. vec adot vec b+ vec c dot vec d=0