Home
Class 12
MATHS
The number of elements in the domain of ...

The number of elements in the domain of the function `f(x)=sin^(-1)((x^2-2x)/3)+sqrt(([x]+[-x]))` , (where [.] denotes the greater integer function) is equal to a. 4 b. 6 c. 3 d. 5

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of elements in the domain of the function is f(x)=sin^(-1)((x^(2)-2x)/(3))+sqrt([x]+[-x])

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Number of elements in the domain of the function f(x)= 1/sqrt(10C_(x-1)-3.10C_x)

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

The domain of the function f(x)=log_(3)log_(1//3)(x^(2)+10x+25)+(1)/([x]+5) (where [.] denotes the greatest integer function) is

Number of integers in the domain of the function f(x)=sqrt(3-2^(x)-2^(1-k))

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

Domain of the function f(x) = sin^(-1) [1 + cos x]- sqrt(16-x^(2)) ([.) denotes the greatest integer function) is

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :