Home
Class 12
MATHS
The range of function y=[x^2]=[x]^2,x in...

The range of function `y=[x^2]=[x]^2,x in [0,2]` (where [.] denotes the greatest function), is `{0}` b. `{0,1}` c. `{1,2}` d. `{0,1,2}`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function y=[x^(2)]-[x]^(2)x in[0,2] (where [] denotes the greatest integer function),is

Draw the graph of f(x) = [x^(2)], x in [0, 2) , where [*] denotes the greatest integer function.

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

Number of solutions for x^(2)-2-2[x]=0 (where [.] denotes greatest integer function) is

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of the integral int_(0)^(0.9) [x-2[x]] dx , where [.] denotes the greatest integer function, is

Draw the graph of [y] = cos x, x in [0, 2pi], where [*] denotes the greatest integer function.

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function