Home
Class 11
MATHS
Prove that "log"(a^(2))a " log"(b^(2)) b...

Prove that `"log"_(a^(2))a " log"_(b^(2)) b" log_(c^(2))c = (1)/(8)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that log(a^(2)/(bc))+log(b^(2)/(ca))+log(c^(2)/(ab))=0

Prove that : (iv) a^(log_(a^2)x) xx b^(log_(b^2)y) xx c^(log_(c^2)z) = sqrt(xyz)

Prove "log"(a^(2))/(bc) + "log"(b^(2))/(ca) + "log"(c^(2))/(ab) = 0 .

Statement-1: If a =y^(2), b=z^(2) " and " c= x^(2), " then log"_(a) x^(3) xx "log"_(b) y^(3) xx "log"_(c)z^(3) = (27)/(8) Statement-2: "log"_(b) a = (1)/("log"_(a)b)

Statement-1: If a =y^(2), b=z^(2) " and " c= x^(2), " then log"_(a) x^(3) xx "log"_(b) y^(3) xx "log"_(c)z^(3) = (27)/(8) Statement-2: "log"_(b) a = (1)/("log"_(a)b)

Prove that (vi) log((a^2)/(bc)) + log ((b^2)/(ca)) + log ((c^2)/(ab)) = 0

Prove that 1/(log_(a/b) x)+1/(log_(b/c) x)+1/(log_(c/a) x)=0

Prove that (log a)^2-(log b)^2=log (ab) log(a/b)

4.Prove that log_(a)(bc).log_(b)(ca).log_(c)(ab)=2+log_(a)(bc)+log_(b)(ca)+log_(c)(ab)

( Prove that )/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c)=1