Home
Class 12
MATHS
let f(x)=x^3-x^2-3x-1 , g(x)=(x+1)aand h...

let `f(x)=x^3-x^2-3x-1 , g(x)=(x+1)a`and `h(x)=f(x)/g(x)` where `h` is a rational function such that `(1)` it is continuous everywhere except when `x=-1 ,(2) lim_(x->oo)h(x)=oo ` and `(3) lim_(x->-1)h(x)=1/2` then the value of `h(1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=x^(3)-x^(2)-3x-1,g(x)=(x+1)a and h(x)=(f(x))/(g(x)) where h is a rational function such that (1) it is continuous everywhere except when x=-1,(2)lim_(x rarr oo)h(x)=oo and (3) lim_(x rarr-1)h(x)=(1)/(2) then the value of h(1)

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integer function. Then h'((pi)/(2)) is

Let f(x)={x-1,-1<=x<0 and x^(2),0<=x<=1,g(x)=sin x and h(x)=f(|g(x)|)+[f(g(x)) Then

Given f(x)=(1)/(1-x),g(x)=f{f(x)} and h(x)=f{f{f(x)}} then the value of f(x)g(x)h(x) is

If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-x . Then the value of g(h(f(0))) is:

Let f(x)=g(x)(e^(1//x) -e^(-1//x))/(e^(1//x) + e^(-1//x)) , where g is a continuous function then lim_(x to 0) f(x) exist if