Home
Class 12
MATHS
Let f(x)=[(1-sinpix)/(1+cos2pix), x<1/2...

Let `f(x)=[(1-sinpix)/(1+cos2pix), x<1/2 and p , x=1/2 and sqrt(2x-1)/(sqrt(4+sqrt(2x-1))-2)` .Determine the value of p, if possible, so that the function is continuous at `x = 1/2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(sin^(2)pix)/(1+pi^(x)). Then, int[f(x)+f(-x)]dx is equal to

The period of f(x)=sin""(2pix)/(3)+ cos""(pix)/(2) , is

The period of f(x)=sin((pix)/(n-1))+ cos ((pix)/(n)), n in Z, n gt 2 , is

Let "f(x)"|{:(pi^n,sinpix,cospix),((-1)^(n)!,-sin((npi)/2),-cos((npi)/2)),(-1,1/sqrt2,sqrt3/2):}| Then value or d^n/(dx^n)["f(x)"]"at "x=1" is "

The period of the fuction f(x)=sin""((pix)/(n!))+ cos((pix)/((n+1)!)) , is

The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is periodic with period

Let f(x)={[(1-cos4x)/(x^(2)), if x 0 continuous at x=0.