Home
Class 12
MATHS
Sove 2 cos^(-1) x = sin^(-1) (2 x sqrt(1...

Sove `2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

Solve 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

Solve 2cos^(-1)x=sin^(-1)(2x sqrt(1-x^(2)))

(1) / (2) cos ^ (- 1) x = sin ^ (- 1) sqrt ((1-x) / (2)) = cos ^ (- 1) sqrt ((1 + x) / (2 )) = (tan ^ (- 1) (sqrt (1-x ^ (2)))) / (1 + x)

sin^(-1)x=cos^(-1)sqrt(1-x^(2))

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))