Home
Class 12
MATHS
If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(...

If `A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x),` then

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) (sin(sinx))/x

If A=lim_(x->0)sin^(-1)(sinx)/(cos^(-1)(cosx)) and B=lim_(x->0)[|x|]/x then (where [.] denotes greatest integer function)(A) A=1 (B) A does not exist (C) B = 0 (D) B=1

If A=lim_(x->0)sin^(-1)(sinx)/(cos^(-1)(cosx)) and B=lim_(x->0)[|x|]/x then (where [.] denotes greatest integer function)(A) A=1 (B) A does not exist (C) B = 0 (D) B=1

lim_(x to 0) (x^3 sin(1/x))/sinx

lim_(xto0)(sinx(1-cosx))/x^(3)

Evaluate lim_(x to 0) (sinx-2)/(cosx-1).

Evaluate lim_(x to 0) (sinx-2)/(cosx-1).

lim_(x rarr0)(cos^(-1)(cos x))/(sin^(-1)(sin x)) is equal to :