Home
Class 12
MATHS
Let v = 2i + j - k and w = I + 3k. If u ...

Let v = 2i + j - k and w = I + 3k. If u is unit vector. Then the maximum value of the scalar triple product [u v w] is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let barV = 2i + j - k and barW = i + 3k If barU is a unit vector, then the max imum value of the scalar triple product [barU barV barW] is

Let vec nu = 2i+j-k and vec w = i+3k . If vec u is a unit vector, then the maximum values of the scalar triple proudct [vec u vec nu vec w] =

Let vec V=2hat i+hat j-hat k and vec W=hat i+3hat k. If vec U is a unit vector,then the maximum value of the scalar triple product [UVW] is -1 b.sqrt(10)+sqrt(6) c.sqrt(59)d.sqrt(60)

Let v=2vec i+vec j-vec kw=vec i+3vec k and vec u is a unit vector then the maximum value of scalar triple product.

If vecV=2vec i+ vec(j) - vec(k) " and " vec(W) = vec(i) + 3vec(k) . if vec (U) is a unit vectors then the maximum value of the scalar triple product [vec(U) , vec(V) , vec(W)] is

If overset(to)(V) = 2oveset(to)(i) + overset(to)(j) - overset(to)(k) " and " overset(to)(W) = overset(to)(i) + 3overset(to)(k) . if overset(to)(U) is a unit vectors then the maximum value of the scalar triple product [overset(to)(U) , overset(to)(v) , overset(to)(W)] is