Home
Class 12
MATHS
The second derivative of a single valued...

The second derivative of a single valued function parametrically represented by `x=varphi(t)a n dy=psi(t)` (where `varphi(t)a n dpsi(t)` are different function and `varphi^(prime)(t)!=0` ) is given by `(d^2y)/(dx^2)=(((dx)/(dt))((d^2y)/(dt^2))-((d^2x)/(dt^2))((dy)/(dt))/(((dx)/(dt))^2)` `(d^2y)/(dx^2)=(((dx)/(dt))((d^2y)/(dt^2))-((d^2x)/(dt^2))((dy)/(dt))/(((dx)/(dt))^3)` `(d^2y)/(dx^2)=(((d^2x)/(dt))((d^y)/(dt^2))-((d^x)/(dt^))((d^2y)/(dt^2))/(((dx)/(dt))^3)` `(d^2y)/(dx^2)=(((d^2x)/(dt^2))((d^y)/(dt^))-((d^2x)/(dt^2))((d^y)/(dt^))/(((dx)/(dt))^3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dt)log(1+t^(2))

(d)/(dx)int_(t^(2))^(x^(3))(dt)/(sqrt(x^(2)+t^(4)))

Find (d)/(dx)(int_(x^(2))^(x^(3))(1)/(log t)dt)

If x and y are differentiable functions of t, then (dy)/(dx)=(dy//dt)/(dx//dt)," if "(dx)/(dt)ne0 .

(d)/(dx) [int_(0)^(x^(2))(dt)/(t^(2) + 4)] = ?

Q.if x=(a+bt)e^(-nt), show that,((d^(2)x)/(dt^(2)))+2n((dx)/(dt))+n^(2)=0

If y=A sin(omega t-kx), then the value of (d^(2)y)/(dt^(2))/(d^(2)y)/(dx^(2))

State the order and degree of the following differential equations 1)((d^(2)x)/(dt^(2)))^(3)+((dx)/(dt))^(4)-xt=02)(d^(2)y)/(dx^(2))=(1+((dy)/(dx))^(2))^((3)/(2))

For the reaction, 2NO_(2)rightarrow2NO+O_(2) ,rate is expressed as : (a) -(1)/(2)(d[NO_(2)])/(dt)=(1)/(2)(d[NO])/(dt)=(d[O_(2)])/(dt) (b) -(1)/(2)(d[NO_(2)])/(dt)=-(1)/(2)(d[NO])/(dt)=(d[O_(2)])/(dt) (c) -(2d[NO_(2)])/(dt)=(2d[NO])/(dt)=(d[O_(2)])/(dt) (d) -(d[NO_(2)])/(dt)=(d[NO])/(dt)=(d[O_(2)])/(dt)

If y=sin(t^2) , then (d^2y)/(dt^2) will be