Home
Class 11
MATHS
lim(n rarr oo){log(n-1)(n)*log(n)(n+1)*l...

lim_(n rarr oo){log_(n-1)(n)*log_(n)(n+1)*log_(n+1)(n+2).........log_(n^(k)-1)(n^(k))}=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo)[log_(n-1)(n)log_n(n+1)*log_(n+1)(n+2).....log_(n^k-1) (n^k)] is equal to :

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

If n=|__2002, evaluate (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+......+(1)/(log_(2002)n)

sum_(n=1)^(n)(1)/(log_(2)(a))

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]