Home
Class 12
MATHS
For n epsilon N let x(n) be defined as (...

For `n epsilon N` let `x_(n)` be defined as `(1+1/n)^((n+x_(n)))=e` then `lim_(nto oo)(2x_(n))` equals…..

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n)),n<=1, then lim_(n rarr oo)x_(n) is

If x_1=3 and x_ +1= sqrt(2+x_n), n ge 1 , then lim_(nto oo) x_n is equal to

Let A={:[(1,x/n),(-x/n,1)]:},"then "lim_(ntooo) A^(n) is

Let A=[[1,(x)/(n)-(x)/(n),1]] then lim_(n rarr oo)A^(n) is

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

Let A={:[(1,x/n),(-x/n,1)]:},"then "lim_(ntooo) A^(n) is: