Home
Class 12
PHYSICS
Weak background noises from a room set u...

Weak background noises from a room set up the fundamental standing wave in a cardboard tube of length L = 67.0 cm with two open ends. Assume that the speed of sound in the air within the tube is 343 m/s. (a) What frequency do you hear from the tube? (b) If you jam your ear against one end of the tube, what fundamental frequency do you hear from the tube?

Text Solution

AI Generated Solution

To solve the problem step by step, we will first address part (a) and then part (b). ### Part (a): Frequency heard from the tube with both ends open 1. **Identify the parameters**: - Length of the tube, \( L = 67.0 \, \text{cm} = 0.67 \, \text{m} \) - Speed of sound in air, \( v = 343 \, \text{m/s} \) ...
Promotional Banner

Topper's Solved these Questions

  • WAVE - II

    RESNICK AND HALLIDAY|Exercise CHECKPOINTS|4 Videos
  • WAVE - II

    RESNICK AND HALLIDAY|Exercise PROBLEMS|59 Videos
  • VECTORS

    RESNICK AND HALLIDAY|Exercise PRACTICE QUESTIONS|39 Videos
  • WAVES-I

    RESNICK AND HALLIDAY|Exercise Practice Questions (Integer Type)|4 Videos

Similar Questions

Explore conceptually related problems

Calculate the fundamental frequency of an organ pipe, of length 0.8 m open at both ends if the velocity of sound in air is 330 m/s. What will be the fundamental frequency if one end of the pipe is closed ?

An organ pipe of length 0.4m is open at both ends . The speed of sound in air is 340ms^(-1) . The fundamental frequency is

The equation for the fundamental standing sound wave in a tube that is closed at both ends if the tube is 80 cm long and speed of the wave is 330 m//s is (assume that amplitude of wave at antinode to be s_(0) )

A tube closed at one end produces a fundamnetal note of frequency 480 Hz. If the same tube is kept open at both the ends, the fundamental frequency that can be excited is

A cylindrical tube open at both the ends has a fundamental frequency of 390 Hz in air. If 1/4 th of the tube is immesed vertically in water the fundamental frequency of air column is

In an organ pipe of length L open at both ends, the fundamental mode has a frequency (where v is a speed of sound in air)

A tube, open at only one end, is cut into two shorter (non equal) lengths. The piece that is open at both ends has a fundamental frequency of 425 Hz, while the piece open only at one end has a fundamental frequency of 675 Hz. What is the fundamental frequency of the original tube?