Home
Class 14
MATHS
(1^(2) + 2^(2) + 3^(2) + …. + 10^(2)) is...

`(1^(2) + 2^(2) + 3^(2) + …. + 10^(2))` is equal to

A

380

B

385

C

390

D

392

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Given that 1^(2) + 2^(2) + 3^(2) + …. + n^(2) = (n)/(6) (n + 1) (2n + 1) , then 10^(2) + 11^(2) + 12^(2) + … + 20^(2) is equal to

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to

2^(1/2)*4^(3/4) is equal to

Given that (1^(2)+2^(2)+3^(2)+......+10^(2))=385, the value of (2^(2)+4^(2)+6^(2)+....+20^(2)) is equal to

2. | [1 ,1 ,1 ],[4 ,3 ,2], [4^(2) ,3^(2), 2^(2)] | is equal to

If 2^(10) + 2^(9) * 3^(1) + 2 ^(8) * 3^(2) + …. + 2 * 3^(9) + 3^(10) = S - 2^(11) , then S is equal to :