Home
Class 14
MATHS
(1 - (1)/(3)) (1 - (1)/(4)) (1 - (1)/(5)...

`(1 - (1)/(3)) (1 - (1)/(4)) (1 - (1)/(5)) ….. (1 - (1)/(25))` is equal to

A

`(2)/(25)`

B

`(1)/(25)`

C

`1"" (19)/(25)`

D

`(1)/(325)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (1 - \frac{1}{3})(1 - \frac{1}{4})(1 - \frac{1}{5}) \ldots (1 - \frac{1}{25}) \), we will break it down step by step. ### Step 1: Rewrite each term We can rewrite each term in the product: \[ 1 - \frac{1}{n} = \frac{n-1}{n} \] Thus, the expression becomes: \[ (1 - \frac{1}{3})(1 - \frac{1}{4})(1 - \frac{1}{5}) \ldots (1 - \frac{1}{25}) = \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdots \frac{24}{25} \] ### Step 2: Write the product explicitly Now, we can write the product explicitly: \[ \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdots \frac{24}{25} \] ### Step 3: Observe cancellation Notice that in this product, all the intermediate terms will cancel out. Specifically, the numerator of each fraction cancels with the denominator of the next fraction: \[ = \frac{2 \cdot 3 \cdot 4 \cdots \cdot 24}{3 \cdot 4 \cdots \cdot 25} \] ### Step 4: Simplify the expression After cancellation, we are left with: \[ = \frac{2}{25} \] ### Final Answer Thus, the value of the expression \( (1 - \frac{1}{3})(1 - \frac{1}{4})(1 - \frac{1}{5}) \ldots (1 - \frac{1}{25}) \) is: \[ \frac{2}{25} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1-(1)/(3))(1-(1)/(4))(1-(1)/(5))(1-(1)/(6))dots(1-(1)/(n))

(1-(1)/(2))(1-(1)/(3))(1-(1)/(4))(1-(1)/(5)).......(1-(1)/(m))=?

(1)/((2(1)/(3)))+(1)/((1(3)/(4))) is equal to :

(1 - 1/3) (1 - 1/4)(1 - 1/5)………(1 - 1/n) equals:

The sum of the infinite series (1)/(2) ((1)/(3) + (1)/(4)) - (1)/(4)((1)/(3^(2)) + (1)/(4^(2))) + (1)/(6) ((1)/(3^(3)) + (1)/(4^(3))) - ...is equal to