Home
Class 14
MATHS
If A and B are complementary angles, the...

If A and B are complementary angles, then the value of sin A cos B + cos A sin B - tanA ` tan B + sec^(2) A - cot^2 B`is

A

2

B

0

C

1

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

A and B are complementary angles, then find the value of sinAcosB+cosAsinB+2tanAtanB-sec^(2)A+cot^(2)B .

If A and B are complementary angles,then sin A=sin B(b)cos A=cos B(c)tan A=tan B(d)sec A=cos ecB

If sin A=a cos B and cos A=b sin B then tan^(2)B =

If A and B are complementary angles, then the value of (sin^(2)A + sin^(2)B)/("cosec"^(2)A-tan^(2)B) is ________

If A and B are complementary angles, find the value of sqrt((tanAtanB+cotAcotB)/(sinAsecB)-(sin^(2)B)/(cos^(2)A))

The value of sin^2 A cos^2 B + cos^2 A cos^2 B+sin^2 A sin^2 B + cos^2A sin^2B is ……..

(sin A + sin B) / (cos A + cos B) = tan ((A + B) / (2))

If tan A =a/b , then find the value of ("a sin A- b cos A")/("a sin A + b cos A") .

If tan A = (sin B)/(1 - cos B) ,then find the value of tan 2A .

If tanA=n tan B and sinA=m sin B, then the value of cos^2 A is यदि tanA=n tan B और sinA=m sin B, तो cos^2 A का मान है