Home
Class 14
MATHS
If 2 - cos^(2) theta = 3 sin theta cos t...

If `2 - cos^(2) theta = 3 sin theta cos theta , sin theta ne cos theta` then `tan theta` is

A

`1/2`

B

`0`

C

`2/3`

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 - \cos^2 \theta = 3 \sin \theta \cos \theta \) under the condition \( \sin \theta \neq \cos \theta \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2 - \cos^2 \theta = 3 \sin \theta \cos \theta \] We can rearrange this to: \[ \cos^2 \theta + 3 \sin \theta \cos \theta - 2 = 0 \] ### Step 2: Use the Pythagorean identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can express \( \sin^2 \theta \) in terms of \( \cos^2 \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta \] Now, substituting \( \sin^2 \theta \) into the equation gives: \[ 1 - \cos^2 \theta + 3 \sin \theta \cos \theta - 2 = 0 \] This simplifies to: \[ -\cos^2 \theta + 3 \sin \theta \cos \theta - 1 = 0 \] ### Step 3: Divide by \( \cos^2 \theta \) Now, we divide the entire equation by \( \cos^2 \theta \): \[ -\frac{\cos^2 \theta}{\cos^2 \theta} + \frac{3 \sin \theta \cos \theta}{\cos^2 \theta} - \frac{1}{\cos^2 \theta} = 0 \] This simplifies to: \[ -1 + 3 \tan \theta - \sec^2 \theta = 0 \] ### Step 4: Use the identity for \( \sec^2 \theta \) Recall that \( \sec^2 \theta = 1 + \tan^2 \theta \). Substitute this into the equation: \[ -1 + 3 \tan \theta - (1 + \tan^2 \theta) = 0 \] This simplifies to: \[ 3 \tan \theta - \tan^2 \theta - 2 = 0 \] ### Step 5: Rearranging the quadratic equation Rearranging gives us: \[ \tan^2 \theta - 3 \tan \theta + 2 = 0 \] ### Step 6: Factor the quadratic equation Factoring the quadratic: \[ (\tan \theta - 1)(\tan \theta - 2) = 0 \] This gives us two possible solutions: \[ \tan \theta = 1 \quad \text{or} \quad \tan \theta = 2 \] ### Step 7: Consider the condition \( \sin \theta \neq \cos \theta \) Since we are given that \( \sin \theta \neq \cos \theta \), we cannot accept \( \tan \theta = 1 \) (which corresponds to \( \theta = 45^\circ \)). Therefore, we must have: \[ \tan \theta = 2 \] ### Final Answer Thus, the value of \( \tan \theta \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2-cos^(2)theta=3sin theta cos theta where sin theta!=cos theta then tan theta=

cos theta+sin theta=cos2 theta+sin2 theta

(cos theta-sin theta) / (cos theta + sin theta) = sec2 theta-tan2 theta

2 cos (theta - pi //2) + 3 sin (theta + pi//2) - (3sin theta + 2 cos theta ) = ? A. cos theta - sin theta B. sin theta - cos theta C. sin theta + cos theta D. cot theta - tan theta .

(1+sin2 theta-cos2 theta)/(1+sin2 theta+cos2 theta)=tan theta

(1 + sin theta-cos theta) / (1 + sin theta + cos theta) = (tan theta) / (2)

sin theta+sin2 theta+sin3 theta=1+cos theta+cos2 theta

If 3cos theta-4sin theta=2cos theta+sin theta, find tan theta.

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta ne 0 and x sin theta - y cos theta = 0 , then value of (x^(2) + y^(2)) is :

Prove each of the following identities : (i) (sin theta - cos theta)/(sin theta + cos theta) + ( sin theta+ cos theta)/(sin theta - cos theta) = (2)/((2 sin^(2) theta -1)) (ii) (sin theta + cos theta ) /(sin theta - cos theta) + ( sin theta - cos theta) /(sin theta + cos theta) = (2) /((1- 2 cos^(2) theta))