Home
Class 14
MATHS
If x + 1/x = 3 , the value of x^(5) + (1...

If `x + 1/x = 3` , the value of `x^(5) + (1)/(x^5)` is

A

123

B

126

C

113

D

129

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^5 + \frac{1}{x^5} \) given that \( x + \frac{1}{x} = 3 \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ x + \frac{1}{x} = 3 \] 2. **Square both sides:** \[ \left( x + \frac{1}{x} \right)^2 = 3^2 \] This expands to: \[ x^2 + 2 + \frac{1}{x^2} = 9 \] 3. **Rearrange to find \( x^2 + \frac{1}{x^2} \):** \[ x^2 + \frac{1}{x^2} = 9 - 2 = 7 \] 4. **Now, cube both sides of the original equation:** \[ \left( x + \frac{1}{x} \right)^3 = 3^3 \] This expands to: \[ x^3 + 3\left( x + \frac{1}{x} \right) + \frac{1}{x^3} = 27 \] Substituting \( x + \frac{1}{x} = 3 \): \[ x^3 + \frac{1}{x^3} + 3 \cdot 3 = 27 \] Simplifying gives: \[ x^3 + \frac{1}{x^3} + 9 = 27 \] 5. **Rearranging to find \( x^3 + \frac{1}{x^3} \):** \[ x^3 + \frac{1}{x^3} = 27 - 9 = 18 \] 6. **Now, we can find \( x^5 + \frac{1}{x^5} \) using the identity:** \[ x^5 + \frac{1}{x^5} = \left( x^3 + \frac{1}{x^3} \right) \left( x^2 + \frac{1}{x^2} \right) - \left( x + \frac{1}{x} \right) \] Substituting the values we found: \[ x^5 + \frac{1}{x^5} = (18)(7) - 3 \] 7. **Calculating the result:** \[ x^5 + \frac{1}{x^5} = 126 - 3 = 123 \] ### Final Answer: \[ x^5 + \frac{1}{x^5} = 123 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+1/x) =2 then the value of (x^5+1/x^5) is:

If x+(1)/(x)=5 find the value of x^(3)+(1)/(x^(3))