Home
Class 14
MATHS
If sqrt6 xx sqrt15 = x sqrt10 , then the...

If `sqrt6 xx sqrt15 = x sqrt10` , then the value of x is

A

3

B

` pm 3`

C

`sqrt3`

D

`sqrt6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{6} \times \sqrt{15} = x \sqrt{10} \), we will follow these steps: ### Step 1: Simplify the left side of the equation We can use the property of square roots that states \( \sqrt{a} \times \sqrt{b} = \sqrt{a \times b} \). \[ \sqrt{6} \times \sqrt{15} = \sqrt{6 \times 15} \] ### Step 2: Calculate \( 6 \times 15 \) Now we calculate \( 6 \times 15 \): \[ 6 \times 15 = 90 \] ### Step 3: Write the left side in terms of square roots Now we can rewrite the left side: \[ \sqrt{90} = x \sqrt{10} \] ### Step 4: Simplify \( \sqrt{90} \) Next, we simplify \( \sqrt{90} \). We can factor \( 90 \) into its prime factors: \[ 90 = 9 \times 10 = 3^2 \times 10 \] Thus, we have: \[ \sqrt{90} = \sqrt{9 \times 10} = \sqrt{9} \times \sqrt{10} = 3 \sqrt{10} \] ### Step 5: Set the equation Now we can set the equation: \[ 3 \sqrt{10} = x \sqrt{10} \] ### Step 6: Divide both sides by \( \sqrt{10} \) To isolate \( x \), we divide both sides by \( \sqrt{10} \): \[ \frac{3 \sqrt{10}}{\sqrt{10}} = x \] This simplifies to: \[ x = 3 \] ### Final Answer Thus, the value of \( x \) is \( 3 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= (sqrt126 xx sqrt63 xx sqrt45)/(sqrt147 xx sqrt243) , then the value of x is

If (sqrt(1058) xx sqrt(648))/(x) =18 , then the value of x is

If 4=sqrt(x + sqrt(x + sqrt(x +..))) , then the value of x will be:

sqrt(10)xx sqrt(15)