Home
Class 14
MATHS
3 - (3 + sqrt5)/(4) - (1)/(3 + sqrt5) i...

`3 - (3 + sqrt5)/(4) - (1)/(3 + sqrt5)` is equal to

A

0

B

`3/2`

C

`sqrt5/2`

D

`sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 3 - \frac{3 + \sqrt{5}}{4} - \frac{1}{3 + \sqrt{5}} \), we will follow these steps: ### Step 1: Simplify the expression We start with the expression: \[ 3 - \frac{3 + \sqrt{5}}{4} - \frac{1}{3 + \sqrt{5}} \] ### Step 2: Combine the fractions To combine the fractions, we need a common denominator. The common denominator for \( 4 \) and \( 3 + \sqrt{5} \) is \( 4(3 + \sqrt{5}) \). We rewrite each term with this common denominator: \[ 3 = \frac{3 \cdot 4(3 + \sqrt{5})}{4(3 + \sqrt{5})} = \frac{12(3 + \sqrt{5})}{4(3 + \sqrt{5})} \] \[ -\frac{3 + \sqrt{5}}{4} = -\frac{(3 + \sqrt{5})(3 + \sqrt{5})}{4(3 + \sqrt{5})} = -\frac{(3 + \sqrt{5})^2}{4(3 + \sqrt{5})} \] \[ -\frac{1}{3 + \sqrt{5}} = -\frac{4}{4(3 + \sqrt{5})} \] ### Step 3: Combine all terms Now we can combine all the terms over the common denominator: \[ \frac{12(3 + \sqrt{5}) - (3 + \sqrt{5})^2 - 4}{4(3 + \sqrt{5})} \] ### Step 4: Expand and simplify the numerator First, we need to expand \( (3 + \sqrt{5})^2 \): \[ (3 + \sqrt{5})^2 = 9 + 6\sqrt{5} + 5 = 14 + 6\sqrt{5} \] Now substitute this back into the numerator: \[ 12(3 + \sqrt{5}) - (14 + 6\sqrt{5}) - 4 \] Expanding \( 12(3 + \sqrt{5}) \): \[ = 36 + 12\sqrt{5} \] Now combine: \[ 36 + 12\sqrt{5} - 14 - 6\sqrt{5} - 4 = 36 - 14 - 4 + (12\sqrt{5} - 6\sqrt{5}) = 18 + 6\sqrt{5} \] ### Step 5: Final expression Now we have: \[ \frac{18 + 6\sqrt{5}}{4(3 + \sqrt{5})} \] We can simplify this further: \[ = \frac{6(3 + \sqrt{5})}{4(3 + \sqrt{5})} = \frac{6}{4} = \frac{3}{2} \] ### Final Answer Thus, the value of the expression \( 3 - \frac{3 + \sqrt{5}}{4} - \frac{1}{3 + \sqrt{5}} \) is: \[ \frac{3}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(-3))(sqrt(-5)) is equal to

3/(sqrt3 - sqrt5)

(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) Is equal to :

sin{2(sin^(-1)(sqrt(5))/(3)-cos^(-1)(sqrt(5))/(3))}quad is equal to (k sqrt(5))/(81) then k=

(3 + sqrt5)^-3 + (3 - sqrt5)^-3

If x + 1/x = sqrt5 , then x^(3) + 1/x^(3) is equal to :