Home
Class 14
MATHS
If cos A + cos^(2) A = 1 , then sin^(2) ...

If `cos A + cos^(2) A = 1` , then `sin^(2) A + sin^(4) A` is equal to

A

1

B

`1/2`

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos A + \cos^2 A = 1 \) and find the value of \( \sin^2 A + \sin^4 A \), we can follow these steps: ### Step 1: Rearranging the Equation Start with the given equation: \[ \cos A + \cos^2 A = 1 \] Rearranging this gives: \[ \cos^2 A = 1 - \cos A \] ### Step 2: Using the Pythagorean Identity We know from the Pythagorean identity that: \[ \sin^2 A + \cos^2 A = 1 \] From this, we can express \( \sin^2 A \) in terms of \( \cos A \): \[ \sin^2 A = 1 - \cos^2 A \] ### Step 3: Substitute for \( \cos^2 A \) Now, substitute \( \cos^2 A \) from Step 1 into the equation for \( \sin^2 A \): \[ \sin^2 A = 1 - (1 - \cos A) = \cos A \] ### Step 4: Finding \( \sin^4 A \) Next, we need to find \( \sin^4 A \): \[ \sin^4 A = (\sin^2 A)^2 = (\cos A)^2 = \cos^2 A \] ### Step 5: Combine \( \sin^2 A \) and \( \sin^4 A \) Now, we can find \( \sin^2 A + \sin^4 A \): \[ \sin^2 A + \sin^4 A = \cos A + \cos^2 A \] ### Step 6: Substitute Back to the Original Equation From the original equation, we know: \[ \cos A + \cos^2 A = 1 \] ### Conclusion Thus, we find that: \[ \sin^2 A + \sin^4 A = 1 \] ### Final Answer The value of \( \sin^2 A + \sin^4 A \) is \( 1 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

if cos A+cos^(2)A=1 , then sin^(2)A+sin^(4)A=1

If cos A+cos^(2)A=1, find the value of sin^(2)A+sin^(4)A

What is ( cos ^(4) A - sin ^(4) A)/( cos ^(2) A - sin ^(2) A) equal to ?

If sin A + cos A =1, then sin 2A is equal to

If 2sin x-cos2x=1 ,then (cos^(2)x+cos^(4)x+4)/(2) is equal to

The value of 4 sin A cos^(3) A- 4 cos A sin^(3) A is equal to

If sin theta + sin^(2) theta=1 " then " cos^(2) theta+ cos^(4) theta is equal to