Home
Class 14
MATHS
If 1^(3) + 2^(3)+……. +9^(3)=2025, then t...

If `1^(3) + 2^(3)`+……. +`9^(3)`=2025, then the approximate value of `(0.11)^(3)+(0.22)^(3)`+…..+`(0.99)^(3)` is

A

0.2695

B

0.3695

C

2.695

D

3.695

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the approximate value of the sum \( (0.11)^3 + (0.22)^3 + \ldots + (0.99)^3 \). ### Step 1: Recognize the pattern The terms in the sum can be rewritten as: \[ (0.11)^3 + (0.22)^3 + (0.33)^3 + (0.44)^3 + (0.55)^3 + (0.66)^3 + (0.77)^3 + (0.88)^3 + (0.99)^3 \] This can be expressed as: \[ (0.11)^3 \cdot (1^3 + 2^3 + \ldots + 9^3) \] ### Step 2: Factor out \( (0.11)^3 \) We know from the problem statement that: \[ 1^3 + 2^3 + \ldots + 9^3 = 2025 \] Thus, we can factor out \( (0.11)^3 \): \[ (0.11)^3 \cdot 2025 \] ### Step 3: Calculate \( (0.11)^3 \) Now, we calculate \( (0.11)^3 \): \[ (0.11)^3 = 0.11 \times 0.11 \times 0.11 = 0.001331 \] ### Step 4: Multiply by 2025 Now we multiply \( 0.001331 \) by \( 2025 \): \[ 0.001331 \times 2025 \] ### Step 5: Perform the multiplication Calculating this gives: \[ 0.001331 \times 2025 \approx 2.695 \] ### Conclusion Thus, the approximate value of \( (0.11)^3 + (0.22)^3 + \ldots + (0.99)^3 \) is approximately \( 2.695 \). ### Final Answer The final answer is approximately \( 2.695 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The approximate value of root(3)(0.009) is

The approximate value of root3(-0.99) is ______.

Evaluate: (0.2)^(3)-(0.3)^(3)+(0.1)^(3)

If 1^3+2^3+ dot +9^3=2025 , then the value of (0. 11)^3+(0. 22)^3+ dot+(0. 99)^3 is close to (a) 0.2695 (b) 0.3695 (c) 2.695 (d) 3.695