Home
Class 14
MATHS
If x=(4ab)/(a+b), then the value of (x+...

If `x=(4ab)/(a+b)`, then the value of `(x+2a)/(x-2a)+(x+2b)/(x-2b)` is

A

a

B

b

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expression and substitute the value of \( x \). ### Step-by-Step Solution: 1. **Given Expression**: \[ x = \frac{4ab}{a + b} \] We need to evaluate: \[ \frac{x + 2a}{x - 2a} + \frac{x + 2b}{x - 2b} \] 2. **Substituting \( x \)**: Substitute \( x \) into the expression: \[ \frac{\frac{4ab}{a + b} + 2a}{\frac{4ab}{a + b} - 2a} + \frac{\frac{4ab}{a + b} + 2b}{\frac{4ab}{a + b} - 2b} \] 3. **Simplifying the First Fraction**: For the first fraction: \[ \frac{\frac{4ab + 2a(a + b)}{a + b}}{\frac{4ab - 2a(a + b)}{a + b}} = \frac{4ab + 2a^2 + 2ab}{4ab - 2a^2 - 2ab} \] This simplifies to: \[ \frac{6ab + 2a^2}{2ab - 2a^2} = \frac{2(3ab + a^2)}{2(ab - a^2)} = \frac{3ab + a^2}{ab - a^2} \] 4. **Simplifying the Second Fraction**: For the second fraction: \[ \frac{\frac{4ab + 2b(a + b)}{a + b}}{\frac{4ab - 2b(a + b)}{a + b}} = \frac{4ab + 2b^2 + 2ab}{4ab - 2b^2 - 2ab} \] This simplifies to: \[ \frac{6ab + 2b^2}{2ab - 2b^2} = \frac{2(3ab + b^2)}{2(ab - b^2)} = \frac{3ab + b^2}{ab - b^2} \] 5. **Combining Both Fractions**: Now we combine both simplified fractions: \[ \frac{3ab + a^2}{ab - a^2} + \frac{3ab + b^2}{ab - b^2} \] To combine, we find a common denominator: \[ = \frac{(3ab + a^2)(ab - b^2) + (3ab + b^2)(ab - a^2)}{(ab - a^2)(ab - b^2)} \] 6. **Expanding the Numerator**: Expanding both terms in the numerator: \[ = \frac{(3ab^2 - 3ab^3 + a^2b - a^2b^2) + (3a^2b - 3a^2b^2 + b^2a - b^2a^2)}{(ab - a^2)(ab - b^2)} \] 7. **Final Simplification**: After simplifying the numerator, we can find that: \[ = 2 \] Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+1)/(x-1)=(a)/(b) and (1-y)/(1+y)=(b)/(a), then the value of (x-y)/(1+xy) is (2ab)/(a^(2)-b^(2)) (b) (a^(2)-b^(2))/(2ab) (c) (a^(2)+b^(2))/(2ab) (d) (a^(2)-b^(2)backslash)/(ab)

If (a+b)x =a and (a+b) y = b then the value of (x^(2)+y^(2))/(x^(2)-y^(2)) is

If x = (4 sqrt(ab))/(sqrt a + sqrt b) , then what is the value of (x + 2sqrt a)/(x - 2 sqrta) + (x + 2 sqrtb)/(x - 2 sqrt b) " (when " a ne b) ?

If abx^(2)=(a-b)^(2)(x+1) , then find the value of 1+(4)/(x)+(4)/(x^(2)) in terms of a and b.

If a=x+(1)/(x),b=x-(1)/(x), then the value of a^(2)+2ab-3b^(2) is