Home
Class 14
MATHS
If x=997 , y=998 z=999 then the value of...

If x=997 , y=998 z=999 then the value of `x^(2)+y^(2)+z^(2)-xy-yz-zx` will be

A

3

B

9

C

16

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( x^2 + y^2 + z^2 - xy - yz - zx \) given \( x = 997 \), \( y = 998 \), and \( z = 999 \), we can follow these steps: ### Step 1: Write down the expression We start with the expression: \[ x^2 + y^2 + z^2 - xy - yz - zx \] ### Step 2: Substitute the values of x, y, and z Substituting the values of \( x \), \( y \), and \( z \): \[ 997^2 + 998^2 + 999^2 - (997 \cdot 998) - (998 \cdot 999) - (999 \cdot 997) \] ### Step 3: Calculate each term Now we calculate each term: - \( 997^2 = 994009 \) - \( 998^2 = 996004 \) - \( 999^2 = 998001 \) Now, calculate the products: - \( 997 \cdot 998 = 995006 \) - \( 998 \cdot 999 = 997002 \) - \( 999 \cdot 997 = 996003 \) ### Step 4: Substitute the calculated values back into the expression Now substitute these values back into the expression: \[ 994009 + 996004 + 998001 - 995006 - 997002 - 996003 \] ### Step 5: Simplify the expression Now, simplify the expression step by step: 1. Calculate the sum of squares: \[ 994009 + 996004 + 998001 = 2984004 \] 2. Calculate the sum of products: \[ 995006 + 997002 + 996003 = 2984001 \] 3. Now substitute these sums into the expression: \[ 2984004 - 2984001 = 3 \] ### Final Answer Thus, the value of the expression \( x^2 + y^2 + z^2 - xy - yz - zx \) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 6, y = 4 and z = 3, then find the value of x ^(2) + y ^(2) + z ^(2) - 2xy + 2 yz - 2 zx.

If x + y + z = 10, x ^(3) + y ^(3) + z ^(3) = 75 and xyz = 15, then find the value of x ^(2) + y ^(2) + z ^(2) - xy - yz - zx

If x+y+z=6, xy+yz+zx=11. Find the value fo x^(2)+y^(2)+z^(2) .

If x + y + z = 0 , then the value of (x^2)/(yz) + (y^2)/(zx) + (z^2)/(xy) is:

If x + y + z = 10, x^3+y^3+z^3=75 and xyz = 15, then find the value of x^2+y^2+z^2 -xy-yz-zx यदि x + y + z = 10, x^3+y^3+z^3=75 तथा xyz = 15 है, तो x^2+y^2+z^2 -xy-yz-zx का मान ज्ञात कीजिए।

find the value of x+y+z if x^(2)+y^(2)+z^(2)=18 and xy+yz+zx=9 .