Home
Class 14
MATHS
If a+b+c=8, then the value of (a-4)^(3)+...

If a+b+c=8, then the value of `(a-4)^(3)+(b-3)^(3)+(c-1)^(3)-3(a-4)(b-3)(c-1)` is

A

2

B

4

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=8 , then value of (a-4)^(3) +(b-3)^(3) +(c-1)^(3)-3(a-4) (b-3) (c-1) is

If (a-b)=3,(b-c)=5 and (c-a)=1 then the value of (a^(3)+b^(3)+c^(3)-3abc)/(a+b+c) is?

If (a - b) = 3 , (b - c) = 5 and ( c - a) = 1 , then the value of (a^(3) + b^(3) + c^(3) - 3abc)/(a + b + c) is

If a-b=1, then the value of a^(3)-b^(3)-3ab will be -3(b)-1(c)1(d)3

If (a-b) =3, (b-c)=5 and (c-a)=1 then what is the value of (a^(3)+b^(3)+c^(3)-3abc)/(a+b+c) ?

What is the value of the expression? ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/(3(a-b)(b-c)(c-a))=? (a)4 (b)1 (c)2 (d)0