Home
Class 14
MATHS
If x=sqrta+(1)/(sqrta), y=sqrta-(1)/(sqr...

If `x=sqrta+(1)/(sqrta), y=sqrta-(1)/(sqrta)` then the value of `x^(4)+y^(4)-2x^(2)y^(2)` is

A

16

B

20

C

10

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expressions for \( x \) and \( y \): \[ x = \sqrt{a} + \frac{1}{\sqrt{a}} \] \[ y = \sqrt{a} - \frac{1}{\sqrt{a}} \] We need to find the value of \( x^4 + y^4 - 2x^2y^2 \). ### Step 1: Calculate \( x^2 \) and \( y^2 \) First, we calculate \( x^2 \) and \( y^2 \): \[ x^2 = \left( \sqrt{a} + \frac{1}{\sqrt{a}} \right)^2 = a + 2 + \frac{1}{a} \] \[ y^2 = \left( \sqrt{a} - \frac{1}{\sqrt{a}} \right)^2 = a - 2 + \frac{1}{a} \] ### Step 2: Calculate \( x^2 + y^2 \) Next, we find \( x^2 + y^2 \): \[ x^2 + y^2 = \left( a + 2 + \frac{1}{a} \right) + \left( a - 2 + \frac{1}{a} \right) \] \[ = 2a + 2\cdot\frac{1}{a} = 2\left(a + \frac{1}{a}\right) \] ### Step 3: Calculate \( x^2y^2 \) Now, we calculate \( x^2y^2 \): \[ x^2y^2 = \left( a + 2 + \frac{1}{a} \right)\left( a - 2 + \frac{1}{a} \right) \] Using the difference of squares: \[ = \left( a + \frac{1}{a} \right)^2 - 2^2 = \left( a + \frac{1}{a} \right)^2 - 4 \] ### Step 4: Calculate \( x^4 + y^4 \) Now we can use the identity \( x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 \): \[ x^4 + y^4 = \left( 2\left(a + \frac{1}{a}\right) \right)^2 - 2\left( \left( a + \frac{1}{a} \right)^2 - 4 \right) \] \[ = 4\left(a + \frac{1}{a}\right)^2 - 2\left( \left( a + \frac{1}{a} \right)^2 - 4 \right) \] \[ = 4\left(a + \frac{1}{a}\right)^2 - 2\left(a + \frac{1}{a}\right)^2 + 8 \] \[ = 2\left(a + \frac{1}{a}\right)^2 + 8 \] ### Step 5: Combine to find \( x^4 + y^4 - 2x^2y^2 \) Finally, we substitute back into the expression we need to evaluate: \[ x^4 + y^4 - 2x^2y^2 = \left( 2\left(a + \frac{1}{a}\right)^2 + 8 \right) - 2\left( \left( a + \frac{1}{a} \right)^2 - 4 \right) \] \[ = 2\left(a + \frac{1}{a}\right)^2 + 8 - 2\left(a + \frac{1}{a}\right)^2 + 8 \] \[ = 16 \] Thus, the value of \( x^4 + y^4 - 2x^2y^2 \) is: \[ \boxed{16} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sqrtp+1/sqrtp and y=sqrtp-1/sqrtp , then find the value x^(4)+y^(4) -2x^2y^2

If (sqrta+sqrtb)=17 and (sqrta-sqrtb)=1 , then the value of sqrtab is :