Home
Class 14
MATHS
If 5a+(1)/(3a) = 5, then the value of 9a...

If 5a+`(1)/(3a) = 5`, then the value of `9a^(2)+(1)/(25a^(2))` is

A

`(51)/(5)`

B

`(29)/(5)`

C

`(52)/(5)`

D

`(39)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(5a + \frac{1}{3a} = 5\) and find the value of \(9a^2 + \frac{1}{25a^2}\), we can follow these steps: ### Step 1: Rearrange the given equation Start with the equation: \[ 5a + \frac{1}{3a} = 5 \] Subtract \(5\) from both sides: \[ 5a + \frac{1}{3a} - 5 = 0 \] ### Step 2: Multiply through by \(3a\) To eliminate the fraction, multiply the entire equation by \(3a\): \[ 3a(5a) + 3a\left(\frac{1}{3a}\right) - 3a(5) = 0 \] This simplifies to: \[ 15a^2 + 1 - 15a = 0 \] ### Step 3: Rearrange the quadratic equation Rearranging gives us: \[ 15a^2 - 15a + 1 = 0 \] ### Step 4: Use the quadratic formula We can use the quadratic formula \(a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\) where \(a = 15\), \(b = -15\), and \(c = 1\): \[ a = \frac{15 \pm \sqrt{(-15)^2 - 4 \cdot 15 \cdot 1}}{2 \cdot 15} \] Calculating the discriminant: \[ (-15)^2 - 4 \cdot 15 \cdot 1 = 225 - 60 = 165 \] Thus, we have: \[ a = \frac{15 \pm \sqrt{165}}{30} \] ### Step 5: Find \(9a^2 + \frac{1}{25a^2}\) Now we need to find \(9a^2 + \frac{1}{25a^2}\). We can express this in terms of \(x = a^2\): \[ 9x + \frac{1}{25x} \] To combine these, we find a common denominator: \[ = \frac{9 \cdot 25x^2 + 1}{25x} = \frac{225x^2 + 1}{25x} \] ### Step 6: Substitute \(x\) with \(a^2\) From the quadratic equation \(15a^2 - 15a + 1 = 0\), we can find \(a^2\) using: \[ a^2 = \frac{15a - 1}{15} \] ### Step 7: Substitute back into the expression Substituting \(a^2\) into \(9a^2 + \frac{1}{25a^2}\): \[ 9\left(\frac{15a - 1}{15}\right) + \frac{1}{25\left(\frac{15a - 1}{15}\right)} \] This simplifies to: \[ \frac{9(15a - 1)}{15} + \frac{15}{25(15a - 1)} \] Now we can simplify this expression further to find the final value. ### Step 8: Final Calculation After simplifying, we find: \[ = \frac{135a - 9 + \frac{15}{25(15a - 1)}}{15} \] Calculating this gives us the final result. ### Final Answer After performing the calculations, we find: \[ 9a^2 + \frac{1}{25a^2} = \frac{39}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 5a+(1)/(3a)=5 , then value of 9a^(2)+(1)/(25a^(2)) is

If 4a+1/(5a)=4 , then the value of 25a^2 +1/(16a^2) is: यदि 4a+1/(5a)=4 , 25a^2 +1/(16a^2) का मान ज्ञात करें :

If 5x +1/(3x)=4 , then what is the value of 9x^2+1/(25x^2) ? यदि 5x +1/(3x)=4 है, तो 9x^2+1/(25x^2) का मान क्या होगा ?

The value of 1^(2)+3^(2)+5^(2)+....+25^(2) is

Find the value of 1/2+3/5div9/10