Home
Class 14
MATHS
If a+b+c=0, the value of ((a^(2))/(bc)+(...

If a+b+c=0, the value of `((a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab))` is

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\) given that \(a + b + c = 0\). ### Step-by-Step Solution: 1. **Substitution**: Since \(a + b + c = 0\), we can express one variable in terms of the others. For example, we can write \(c = -a - b\). 2. **Substituting \(c\)**: Substitute \(c\) in the expression: \[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = \frac{a^2}{b(-a-b)} + \frac{b^2}{(-a-b)a} + \frac{(-a-b)^2}{ab} \] 3. **Simplifying Each Term**: - The first term becomes: \[ \frac{a^2}{b(-a-b)} = -\frac{a^2}{b(a+b)} \] - The second term becomes: \[ \frac{b^2}{(-a-b)a} = -\frac{b^2}{a(a+b)} \] - The third term becomes: \[ \frac{(-a-b)^2}{ab} = \frac{(a+b)^2}{ab} \] 4. **Combining the Terms**: Now, we can combine these terms: \[ -\frac{a^2}{b(a+b)} - \frac{b^2}{a(a+b)} + \frac{(a+b)^2}{ab} \] The common denominator for the first two terms is \(ab(a+b)\): \[ -\frac{a^3 + b^3}{ab(a+b)} + \frac{(a+b)^2}{ab} \] 5. **Using the Identity**: Recall that \(a^3 + b^3 = (a+b)(a^2 - ab + b^2)\). Since \(a + b = -c\), we can express this in terms of \(c\): \[ a^3 + b^3 = -c(a^2 - ab + b^2) \] 6. **Final Expression**: Now, substituting back into our expression, we can simplify and find that: \[ \frac{(a+b)^2 - (a^3 + b^3)}{ab(a+b)} = \frac{c^2 + 3abc}{ab(-c)} \] 7. **Result**: After simplification, we find that: \[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3 \] ### Conclusion: Thus, the value of the expression \(\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\) is \(3\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are non-zero real numbers and a+b+c=0, then the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab) is (A)0(B)2(D)4(C)3

If a+b+c=0, then find the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)

If a+b+c=0, then write the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)

If a + b + c = 0, then the value of a^2/(bc) +b^2/(ca)+c^2/(ab) is : यदि a + b + c = 0 तो a^2/(bc) +b^2/(ca)+c^2/(ab) का मान ज्ञात करें

If a+b+c = 0 find (a^(2))/(bc) + (b^(2))/(ca) + (c^(2))/(ab)= ?

If a+b+c=0, then the value of ((a+b)^(2))/(ab)+((b+c)^(2))/(bc)+((c+a)^(2))/(ca) is

If a+b+c=0, find the value of (a^(2))/((a^(2)-bc))+(b^(2))/((b^(2)-ca))+(c^(2))/((c^(2)-ab))*( a) 0 (b) 1(c)2(d)4

If ab + bc + ca = 0, then what is the value of (a^(2))/(a^(2) - bc) + (b^(2))/(b^(2)-ca) + (c^(2))/(c^(2) - ab) ?