Home
Class 14
MATHS
If sectheta+tantheta=sqrt3, then the pos...

If `sectheta+tantheta=sqrt3`, then the positive value of `sintheta` is

A

0

B

`(1)/(2)`

C

`(sqrt3)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec \theta + \tan \theta = \sqrt{3} \) and find the positive value of \( \sin \theta \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sec \theta + \tan \theta = \sqrt{3} \] ### Step 2: Use the identity Recall the identity: \[ \sec^2 \theta - \tan^2 \theta = 1 \] This can be factored as: \[ (\sec \theta + \tan \theta)(\sec \theta - \tan \theta) = 1 \] ### Step 3: Substitute the known value Since we know \( \sec \theta + \tan \theta = \sqrt{3} \), we can substitute this into the identity: \[ \sqrt{3}(\sec \theta - \tan \theta) = 1 \] ### Step 4: Solve for \( \sec \theta - \tan \theta \) Now, we can isolate \( \sec \theta - \tan \theta \): \[ \sec \theta - \tan \theta = \frac{1}{\sqrt{3}} \] ### Step 5: Set up a system of equations Now we have two equations: 1. \( \sec \theta + \tan \theta = \sqrt{3} \) 2. \( \sec \theta - \tan \theta = \frac{1}{\sqrt{3}} \) Let’s denote: - \( x = \sec \theta \) - \( y = \tan \theta \) We can express the two equations as: 1. \( x + y = \sqrt{3} \) 2. \( x - y = \frac{1}{\sqrt{3}} \) ### Step 6: Solve for \( x \) and \( y \) Add the two equations: \[ (x + y) + (x - y) = \sqrt{3} + \frac{1}{\sqrt{3}} \] This simplifies to: \[ 2x = \sqrt{3} + \frac{1}{\sqrt{3}} \] Calculating the right side: \[ \sqrt{3} + \frac{1}{\sqrt{3}} = \frac{3 + 1}{\sqrt{3}} = \frac{4}{\sqrt{3}} \] Thus: \[ 2x = \frac{4}{\sqrt{3}} \implies x = \frac{2}{\sqrt{3}} \] Now substitute \( x \) back to find \( y \): \[ \frac{2}{\sqrt{3}} + y = \sqrt{3} \implies y = \sqrt{3} - \frac{2}{\sqrt{3}} = \frac{3 - 2}{\sqrt{3}} = \frac{1}{\sqrt{3}} \] ### Step 7: Find \( \sin \theta \) We know: \[ \sec \theta = \frac{1}{\cos \theta} \quad \text{and} \quad \tan \theta = \frac{\sin \theta}{\cos \theta} \] From \( \sec \theta = \frac{2}{\sqrt{3}} \): \[ \cos \theta = \frac{\sqrt{3}}{2} \] And from \( \tan \theta = \frac{1}{\sqrt{3}} \): \[ \sin \theta = \tan \theta \cdot \cos \theta = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} = \frac{1}{2} \] ### Final Answer Thus, the positive value of \( \sin \theta \) is: \[ \sin \theta = \frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sectheta + tan theta = sqrt(3) , then the positive value of sin theta is:

If tantheta=sqrt(3) ,then find the value of sintheta .

If sectheta+tantheta=p , then sectheta=?

If tantheta+sectheta=sqrt3, then: theta=

If sectheta+tantheta=sqrt(2) ,find the value of sintheta .

If sectheta+tantheta=2 , then find the value of sintheta .

If sectheta+tantheta=3 , then find the value of sectheta .

If 5sectheta-3tantheta=5 , then what is the value of 5tantheta-3sectheta ?

if sectheta +tantheta =5 then find the value of tantheta

sectheta+tantheta=2+sqrt(5) , then sintheta will be