Home
Class 14
MATHS
If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)...

If `(cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1` then the value of `(cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha)` is

A

4

B

0

C

`(1)/(8)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{\cos^4 \alpha}{\cos^2 \beta} + \frac{\sin^4 \alpha}{\sin^2 \beta} = 1 \] We need to find the value of: \[ \frac{\cos^4 \beta}{\cos^2 \alpha} + \frac{\sin^4 \beta}{\sin^2 \alpha} \] ### Step 1: Rewrite the Given Equation We can rewrite the left-hand side of the given equation by taking a common denominator: \[ \frac{\cos^4 \alpha \sin^2 \beta + \sin^4 \alpha \cos^2 \beta}{\cos^2 \beta \sin^2 \beta} = 1 \] This implies: \[ \cos^4 \alpha \sin^2 \beta + \sin^4 \alpha \cos^2 \beta = \cos^2 \beta \sin^2 \beta \] ### Step 2: Express the Required Expression Now, we express the required expression: \[ \frac{\cos^4 \beta}{\cos^2 \alpha} + \frac{\sin^4 \beta}{\sin^2 \alpha} \] Taking a common denominator, we have: \[ \frac{\cos^4 \beta \sin^2 \alpha + \sin^4 \beta \cos^2 \alpha}{\cos^2 \alpha \sin^2 \alpha} \] ### Step 3: Relate the Two Expressions Notice that we can relate the two expressions. We know from the first equation that: \[ \cos^4 \alpha \sin^2 \beta + \sin^4 \alpha \cos^2 \beta = \cos^2 \beta \sin^2 \beta \] Using the identity \( \sin^2 \beta = 1 - \cos^2 \beta \), we can substitute this into our expression. ### Step 4: Substitute and Simplify Substituting \( \sin^2 \beta \) into the equation gives us: \[ \cos^4 \alpha (1 - \cos^2 \beta) + \sin^4 \alpha \cos^2 \beta = \cos^2 \beta (1 - \cos^2 \beta) \] ### Step 5: Analyze the Result This leads us to see that both expressions are symmetric in nature. If we assume \( \cos^2 \alpha = \cos^2 \beta \) and \( \sin^2 \alpha = \sin^2 \beta \), we can conclude that: \[ \frac{\cos^4 \beta}{\cos^2 \alpha} + \frac{\sin^4 \beta}{\sin^2 \alpha} = 1 \] ### Final Result Thus, the value of the expression we need to find is: \[ \frac{\cos^4 \beta}{\cos^2 \alpha} + \frac{\sin^4 \beta}{\sin^2 \alpha} = 1 \] ### Conclusion The answer is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then (cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha)=?

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)beta)/(sin^(2)alpha)=1 , then (cos^(6)beta)/(cos^(4)alpha)+(sin^(6)alpha)/(sin^(4)beta)= ?

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 prove that (i)sin^(4)alpha+sin^(4)beta=2sin^(2)alpha sin^(2)beta(ii)(cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha)=1

If cos^(2)alpha-sin^(2)alpha=tan^(2)beta , then the value of cos^(2)beta-sin^(2)beta is

If (cos alpha)/(cos beta)=a and (sin alpha)/(sin beta)=b then the value of sin^(2)beta in terms of a and b

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

If f(alpha, beta) = cos^(4)alpha/cos^(2)beta + sin^(4)alpha/sin^(2)beta then prove that f(alpha, beta) =1 ⇔ f(beta, alpha) =1 .

cos alpha+cos beta+cos gamma=0sin alpha+sin beta+sin gamma=0 then the value of sin^(4)alpha+sin^(4)beta+sin^(4)gamma

(cos alpha + cos beta) ^ (2) + (sin alpha + sin beta) ^ (2) =