Home
Class 14
MATHS
(sintheta-costheta+1)/(sintheta+costheta...

`(sintheta-costheta+1)/(sintheta+costheta-1)` (where `theta ne (pi)/(2))` is equal to

A

`(1+sintheta)/(costheta)`

B

`(1-sintheta)/(costheta)`

C

`(1-costheta)/(sintheta)`

D

`(1+costheta)/(sintheta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1}\), we can follow these steps: ### Step 1: Substitute values for \(\sin \theta\) and \(\cos \theta\) Let's substitute \(\theta = 30^\circ\) into the expression. We know that: \[ \sin 30^\circ = \frac{1}{2}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2} \] ### Step 2: Substitute into the expression Now, we substitute these values into the expression: \[ \frac{\sin 30^\circ - \cos 30^\circ + 1}{\sin 30^\circ + \cos 30^\circ - 1} = \frac{\frac{1}{2} - \frac{\sqrt{3}}{2} + 1}{\frac{1}{2} + \frac{\sqrt{3}}{2} - 1} \] ### Step 3: Simplify the numerator Calculating the numerator: \[ \frac{1}{2} - \frac{\sqrt{3}}{2} + 1 = \frac{1}{2} - \frac{\sqrt{3}}{2} + \frac{2}{2} = \frac{3 - \sqrt{3}}{2} \] ### Step 4: Simplify the denominator Calculating the denominator: \[ \frac{1}{2} + \frac{\sqrt{3}}{2} - 1 = \frac{1}{2} + \frac{\sqrt{3}}{2} - \frac{2}{2} = \frac{-1 + \sqrt{3}}{2} \] ### Step 5: Combine the results Now we can combine the results: \[ \frac{\frac{3 - \sqrt{3}}{2}}{\frac{-1 + \sqrt{3}}{2}} = \frac{3 - \sqrt{3}}{-1 + \sqrt{3}} \] ### Step 6: Rationalize the denominator To simplify further, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(3 - \sqrt{3})(\sqrt{3} + 1)}{(-1 + \sqrt{3})(\sqrt{3} + 1)} \] Calculating the denominator: \[ (-1 + \sqrt{3})(\sqrt{3} + 1) = -\sqrt{3} - 1 + 3 + \sqrt{3} = 2 \] Calculating the numerator: \[ (3 - \sqrt{3})(\sqrt{3} + 1) = 3\sqrt{3} + 3 - \sqrt{3} - 3 = 2\sqrt{3} \] ### Step 7: Final expression Thus, we have: \[ \frac{2\sqrt{3}}{2} = \sqrt{3} \] ### Conclusion The value of the expression \(\frac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1}\) when \(\theta = 30^\circ\) is \(\sqrt{3}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(costheta,-sintheta),(sintheta,costheta)] , then the matrix A^(-50) , when theta = (pi)/(12) , is equal to

((1+sintheta+i costheta)/(1+sintheta-i costheta))^n is equal to

If (sintheta+costheta)/(sintheta-costheta)=3 then the value of sin^(4)theta is :

If sintheta-costheta=1 ,then find sintheta.costheta

costheta[(costheta, sintheta),(-sintheta,costheta)]+sintheta[(sintheta,-costheta),(costheta,sintheta)] is equal to (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

Sintheta + Costheta = 2 Sintheta - Costheta = ?

If sintheta +costheta =1 , then the value of sin2theta is equal to

If A = ((costheta,-sintheta),(sintheta,costheta)) then