Home
Class 14
MATHS
If (x-3)^(2) + (y-5)^(2) + (z-4)^(2) =0,...

If `(x-3)^(2) + (y-5)^(2) + (z-4)^(2) =`0, then the value of `(x^2)/(9) + (y^2)/(25) + (z^2)/(16)` is

A

12

B

9

C

3

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we need to analyze the equation provided and derive the required values. ### Step 1: Analyze the equation The equation given is: \[ (x-3)^{2} + (y-5)^{2} + (z-4)^{2} = 0 \] Since the sum of squares is equal to zero, each individual square must also be zero. This leads us to the following equations: \[ x - 3 = 0, \quad y - 5 = 0, \quad z - 4 = 0 \] ### Step 2: Solve for x, y, and z From the equations derived: 1. \(x - 3 = 0 \Rightarrow x = 3\) 2. \(y - 5 = 0 \Rightarrow y = 5\) 3. \(z - 4 = 0 \Rightarrow z = 4\) ### Step 3: Substitute the values into the required expression Now we need to find the value of: \[ \frac{x^2}{9} + \frac{y^2}{25} + \frac{z^2}{16} \] Substituting the values of \(x\), \(y\), and \(z\): \[ \frac{3^2}{9} + \frac{5^2}{25} + \frac{4^2}{16} \] ### Step 4: Calculate each term Now we calculate each term: 1. \(\frac{3^2}{9} = \frac{9}{9} = 1\) 2. \(\frac{5^2}{25} = \frac{25}{25} = 1\) 3. \(\frac{4^2}{16} = \frac{16}{16} = 1\) ### Step 5: Add the results Adding these values together: \[ 1 + 1 + 1 = 3 \] ### Final Answer Thus, the value of \(\frac{x^2}{9} + \frac{y^2}{25} + \frac{z^2}{16}\) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+y-z)^(2) +(y+z-x)^(2) +(z+x-y)^(2)=0 then what is the value of x+y+z ?

If x + y + z = 0 then the value of (x^2 y^2 + y^2z^2 + z^2x^2)/(x^4 + y^4 + z^4) is :

If x+y+z=0, then the value of (x^2y^2+y^2z^2+z^2x^2)/(x^4+y^4+z^4) is :