Home
Class 14
MATHS
The value of (4+3sqrt(3))/(7+4 sqrt(3)) ...

The value of `(4+3sqrt(3))/(7+4 sqrt(3))` is

A

`5 sqrt(3)-8`

B

`5 sqrt(3) +8`

C

`8 sqrt(3) +5`

D

`8 sqrt(3) -5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{4 + 3\sqrt{3}}{7 + 4\sqrt{3}}\), we will rationalize the denominator. Here are the steps: ### Step 1: Rationalize the Denominator To rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of \(7 + 4\sqrt{3}\) is \(7 - 4\sqrt{3}\). \[ \frac{4 + 3\sqrt{3}}{7 + 4\sqrt{3}} \cdot \frac{7 - 4\sqrt{3}}{7 - 4\sqrt{3}} = \frac{(4 + 3\sqrt{3})(7 - 4\sqrt{3})}{(7 + 4\sqrt{3})(7 - 4\sqrt{3})} \] ### Step 2: Expand the Numerator Now, we will expand the numerator: \[ (4 + 3\sqrt{3})(7 - 4\sqrt{3}) = 4 \cdot 7 + 4 \cdot (-4\sqrt{3}) + 3\sqrt{3} \cdot 7 + 3\sqrt{3} \cdot (-4\sqrt{3}) \] \[ = 28 - 16\sqrt{3} + 21\sqrt{3} - 12 \] \[ = 28 - 12 + (21\sqrt{3} - 16\sqrt{3}) = 16 + 5\sqrt{3} \] ### Step 3: Expand the Denominator Next, we will expand the denominator using the difference of squares formula: \[ (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 \] \[ = 49 - 16 \cdot 3 = 49 - 48 = 1 \] ### Step 4: Combine the Results Now we can combine the results from the numerator and denominator: \[ \frac{16 + 5\sqrt{3}}{1} = 16 + 5\sqrt{3} \] Thus, the value of \(\frac{4 + 3\sqrt{3}}{7 + 4\sqrt{3}}\) is: \[ \boxed{16 + 5\sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1)/(sqrt(7-4sqrt(3))) is closest to

If n = 7 + 4sqrt(3) then value of (sqrt(n) + 1/(sqrtn)) is

if a=7-4sqrt(3), find the value of sqrt(a)+(1)/(sqrt(a))

The value of (sqrt(48)+sqrt(32))/(sqrt(27)+sqrt(18)) is (4)/(3)(b)4(c)3(c)(3)/(4)

What is the value of sqrt(7 + 4sqrt(3))?

What is the value of sqrt(7 + 4sqrt(3))?